D E

REFLEXIONIS

PVNCTO
 AD OPTICEN,

GEOMETRICA INSTAVRATIO. Authore A. S. L.

LVTETIA PARISIORVM. Apud PETRVM DES-HAYES, viâ Citharœdicâ, fub figno Rofx rubre.
M. DC. XLV.

CVM privilegio regife malestatisz Et Superiorum Permifn.

Summa Priwilegg̈ Reg̈̈.

LVDOVICI XIV. Galliaram, \& Nauarre Regis diplomate cautum eft, ne quis in ipfius Regnis, alijsve Locis eius Ditioni fubjectis, intra proximos annos quinque, à die primx Impreffionis inchoandos, excudat, vendat; excudendum, vendendumque quouis modo acratione curet librum, qui inferibitur, De Reffexionis Punfto ad Opticen, Geometrica infakratio. Authore A. S. L. per extraneos, aut aliâ quâcunque viâ editionem procurando, prxter illius Authorem, aut illos quibus iple concefferit: idque prohibitum fub pøenâ 3000 . libra rum Turonenfium, \& alijs originalidiplomate contra delinquentes expreffis. Quod datũ eft Parifijs die decimâ-tertiâ Nouembris anno Domini milleffmo fexcentefimo quadragefimo tertio. De mandato Regis Signatum, LE BRVN : necen figillo magno Regio munitum.

Abfoluta eft prima Editio die vltimâ Maij Anno millefimo fexcentefino quadragefimo quinto à Petro Des-Hayes, Typographo \& Bibliopolâ Parifienfi; cuiab Authore conceffa eft facultas librum cudendi, vendendique per tenipus Priuilegio Regolatum.
'Les Exemplaires duprefent liure, \& dw Supplement de Vietefait par cét Autheur imprimé' 'année derniere, ont cfé fourníà la Bibliotheque du Roy, © a celle de Monfeignewr le Chancellier.

ILLVSTRISSIMO;

 PAVLINO SANCTINIO

 PAVLINO SANCTINIO LVCENSI PATRICIO S.

$V \notin$ in Ethicis locum virtutis, curiofitas non reperit, honestißimum planè meretur in difciplinis. Originem quippe ex eâdem fuam babuere plarima, qus fic tempeftive, aut numquam Incem vidifent. Circumlatum problema curiofitate excepi, qua idonea fe fe obtulit occafio, vt duo nobilifimam Opticis reftituerentur. Opusculum id circo. virumque praftare vifum eft amicis. Res quidem parua, at in Srathefi id eft peculiare; Volumine non effici pondus. Tuo nuncupatum nomini fuftineas quafo,C LARISSIMEVIR. Fateor quod beneficia, neceßstudo, beneuolentiaque, quâ me femper es profecutus, majore aliquo exquifuiffent monumento, meam erga te obferuantiam atteftari. Verum vbs non attingunt vires, menfuram excipere ex animi

$$
\ddot{a} \cdot \ddot{y}
$$

propenfione bemanitaters decet, Q^{\prime} an igitur plaris. mum polles amplecti munufculum non bareo, EO vebensenter opto. Vale.
A. S. L.

D E
 REFLEXIONIS

P V N C T O.

 OctrinamCatoptriceshactenus ab Auchoribus expofiram, non recte in fuo conftitiffe fundamento, tum ab alijs , tumà Philofophorum difertifimo Kepplero in fuo Paralipomenon ad Virellionem capite tertio, diffufeafleueratur, \& planè pro furcepto icidem argumento non pauca ex Geometrix campofyncere nobisexcoluiffe videri debebat, nifi ab effufofere vbique Phyfico-Mathematico genio, preiudicium fufcepiffet, immò pro acutiffinis in vtraque facultate detectis alijs, veniam imploraffer: quam quidem, veluti de fecciali conceffione eidem, pro alijs non lices vfurpare. Nimirum qui poft illum de obiecto eodencirithar. fufceperunt tractatus, ac Volumina edidêre ex ©itufficme pequeunt, pro eo quodimperfectaì Maioribus agnita fuo abfoluere ac ingenio perficere non funt profequuti. Vt quid igitur gradus ad ea, quaf facultatis magis erant recondita promouêre, $\&$ in fundamento Optices harcre ? Difputantnamque Opuici de imagi- Videantur inter catera duo Vitellionis in thefauro loca, fupple libri 6. propofitio 22 . \& libri 8 propoficio 28. vel fi placet ab antiquiore Alhazeno libri s. propofitiones $39 . \&$ 72. vfurpatx, quibus Authores illide reflexionis inquirentes puncto, fibi \& nobis graue impofuerunt onus, quod quidem ftudioforum nemini videretur nimium, nifi poft longum itineris decurfum à recto declinaffe, \& ad fuffragium mechanicorum, amandatum, fe illufum agnofceret? Quid igitur infignes hac xtate addiderint Mathematici, Georgius Tanfteter, \& Perrus Apianus?non apparet. quid ad $\mathfrak{f x}$ culi deinceps quadrantem Federicus Reifnerus? iterum valtumillud fub pralo opus commitrens, fi quid in typis expurgauerit, ad medullas fane minime traduxit, vt eâdem indigentia; quam prius laborare videarur. Cæteri vero qui noftra xtate eadem repaftinarunt per illamet veftigia nihil altius imprimendo tranfie runt. Qua vero de cauffa ad duo precitata Problemata manum porrexerimus, hxe nobis oblata fuerat.

Dum paucis ab hinc annis Mediolani ageremus, quædam circumlata fuerunt Algebrica Problemata, ac paulo infra Benedictus Maghettus nobilis Affifinates qui Anconæ tunc, modò, vt accepimus vrbis Maceratenfis Medicinæ Profeffor primarius, vnum etiam Problema Geometricum ad amicos conitruendum tranfmiferat, cuius folutio nec ad me feectabat, nequeille direxerat. Verum quum vlero citroque Literx inter nos recurrerent , \& pro Algebricis morem illi geffiffem, eriam in aliorum defectu, \& alterum Geo-
metricè aliquando foluturum frripferam, vt ferè incautè noftra interponeretur fides, attamen non mediocris tune fpes aderat, ab aliquo in hifce exercitato liberari. Vel faltemà Ioanne Camillo Gloriofo Neapoli, plurimorum annorum amiciffimo, quem ad Decades, quas profequebatur explendas, Minuta etiam corrogaffe cognouimus. Res tamé in oppofitumabijt, quum ad fefquiannum exactum, ille acuto correprus morbo decefliffet, nec aliunde aut aleretur, aut exfurgeret fees affequendi altera, ne decurfu temporis maiore contumacia augeretur, vt noftra aliquando exhibita liberaretur fides, coacti fuimus ad propria regredi, ac excutere fcriniola. Cumque ab initio Problema afpexiffem, \& cum altero ex fupra indicatis Opticorum coincidere ftatim vidiffem, vno igitur \& codem contextu exiftimaui poffe \& illi fatisfieri, \& oportunè loca eadem reftitui, vt è regione Geometrarum, facti genera eliminarenturimpropria, quæcunque in noftro inftaurato Magni Vietæ Supplemento iure poffe, \& deberi nuper demonftrauimus. Igitur vos alloquor Nobiles, \& quos veritatis inquirendx cultores altius cura tangir, ne in pofterum impuros aut mechanicos, aut linearis generis excitatores permittatis audiri, quum facultasipfa, \&admodum feliciter per propria abfoluere quear, quæcunque quorum caufla prifci illa eadem admiferunt, \& in vfu pofteritas craffe tranfire permiferat, finite deinceps ad operarios regredi fuos. Nos ad fequentia hunc feruabimus ordinem, per quem breuiter.

Primo loco Problema proponetur, cui vnica fufficeret, \& priuatim per epiftolam liberum fuerat efficere, immo vnam vel alteram conftruendi formam dedimus
demonftratione camen retenta, \&quia ab alijs fortaffe poserit fuppleri, \& quia ex mulciplici mechodo commodèad explicandum referuauimus. Qux modo in fequentibus difponentur, deinde ad cxtera ex variatione Datorum Symptomata extendentur : poftea ad inquirendum in conuexo aliqu x offerentur form x, quatenus fufceptum poftulare videtur argumentum.

PROBLEMA PROPOSITVM.

Dato circulo Eס duobus punctis extra, inaqualiter à centro remotis duas oporteat inclinare lineas in peripheria cawa ad angulums, qua de circulo binas equales aufferant portiones.

CVi harum ftudiofo rerums in aperto non fuerit? hot ferecum Opticorü Problemare conuenire, in quo datis obiecto ac potencia non xqualiter diftantibus ì centro concaui (peculi, authores de zeflexionis purncto inquirans: \& pro conftructione vnius quicquid altruatur, ad alcerum transferri oportere. At vnum alcero tatius pacere, \& quid fit illud infra aperiemus. Nunc vero vt ab omnibus comprehendi poffint quat dicturi fumus, hoc breaiter addimus. Opricorum aimirum Authores definiune ac probant imaginume locà̀ natura effe conftituta in concurfa communi catheri, 8 eproductaincidentiz linex, fcilicet fi pro A B , intelligatur feculum planum in quo, à puncto obiecti e cadat perpendicularis en, \& oculus pomatur effe in D, dum cernat ipfum E, nam linea $d e$ (qua incidentix nuncupatur) folidum inueniens corpus $\boldsymbol{A} \boldsymbol{\theta}$, cranfire non porens à puncto c (quod eft punctúr refle:

xionis) repercutitur ad r , linea mediante $\mathbf{C} \mathrm{E}$ (\& hac dicirur reflexionis linea) \& fi cogitemusidolum non poffe feculum penerrare, tamen natura fuas non di mittit vires, producatur DC linea, \& perpendiculum fimulad concurfum, qui fit in F, locus obiectierit F. oculus profpectarin F, punctúo haclege, ve tantum infra reperiatur f, quantum fupra f peculum eleuatum habeturs, \& hæc naturæ operatio adeo conformis inuenitur, vt per breuiflima procedat, $\&$ immediata : ex qua ratione fequirur inquirere femper, vt linea incidentix, \&linea reflexionis, cum plano fubiecto angulos, nimirum DCB, \& ECA, faciatæquales, qui dicuntur hic reflexionis, ille incidentix angulus. Duo igitur confirmare hic debemus. Primum punctum F, tantum infra intelligi, quantum e reuera erigatur fupra planum.

Secundum angntos D C B , ECA , incidentix ac reflexionis fupponendo æquales, per immediata procedere naturx operationem, adeo vt per inæquales, effectus explicare recufet, Sit igitur.

LEMMA PRIMVM.

Dua linea recta angulos continentes aquales ad vnum plane punctum, breuiores funt omnibus alÿs qus inequales conficiant angulos.

INfigurâ fuperiori defumprâ ex Vitellione Propo: fitione 17. primi, (vnde etiam Clauius ad Propofitionem 7. Libri 8. Geometrix practicx acceptam repofuit, \& ftudiofi inuenient, \& apud alios poftea,) ponamus lineas DC, CE, angulos continere æquales, ad c punctum, ponatur aliud punctum $\mathrm{G}, \&$ lineas DG, EG, angulos conftituere inæquales: Dico aggregatum priorum minus effe aggregato pofteriorum.

Producatur DC, donec cum producta ea concurratin F, duo funt triangula EAC, FAC, in quibus duo anguli ACE, \&EAC, xquales funt duobus ACF, FAC, nam alter rectus, \& alter ex hypothefi,

quia anguli $B C D, A C F$, verticales æquantur, tertius ergo angulus ęqualis habetur, \& quum xquiangulorum triangulorum latus vnum A C , commune fit, neceffariò lineæ AB, AF æquantur, veluti $\mathrm{EC}, \mathrm{CF}, \&$ in altero triangulo $\mathbf{e g f}$, xqualia fimiliter habentur latera, ex xqualitate $\mathrm{EC}, \mathrm{CG}, \& \mathrm{CF}, \mathrm{CG}$, comprehendentia æquales angulos $\mathrm{BCG}, \mathrm{FCG}$, vtcomplementa æqualium, ergo EG, FG, erunt æqualia latera, fed in triangulo DGF, duo latera $D G, G F$, (fiue $\boldsymbol{E} G$) funt reliquo $D F$ maiora, id eft $D C, C E$, ergo operatio Naturx qux femper fit per breuiffima \& immediata angulos incidentix DCB \& reflexionis E C A, $x q u a l e s ~ r e q u i r i t, ~ r e l i q u o s ~ o m n e s, ~ v t ~ i n d e t e r m i n a t o s ~$ relpuit \& ignorat.

SOLVTIO PROBLEMATIS PRIMA.

Circulus daius circa centrum A, σ° duo puncta B,O, fuue linea в с extrema; inequaliter à centro remota, oporteat ab eifdem ad Cauam Peripheriam dusas inflectere ad angulum lineas, que portiones de circulo abfcindant aquales, aut quod eodem recidit, diametro angulus ille bifecetur aqualiter.

SIt circulus, \& per eius centrum ducantur bad, CAE, \& Linea $\mathbf{B C}$, ita in F diuidatur, vefe habet BD, ad Ce, deinde exf per centrum agatur linea fag. Dico punctum \boldsymbol{g} in peripheriâ effe illud problema abfoluens, filicet fíducantur b g, с $\mathbf{\text { g l linex; }}$ auferre decirculo GM , GN , portiones rquales, aut à Diamerro GAO angulum BGC, xqualiter diuidi in

sGA, CGA, \& hoc illud eft quod Problema requirit, \& Optici dicunt quod angulus quem cum tangente facit plano, in puncto g linea $^{\text {b }}$ incidétix x quetur angulo à lineâ reflexionis in eodem puncto \mathbf{G} : igitur vnicâ conftructione \& vnicâ Demonftratione pariter fiet fatis. Confiderentur in Schemate duo triangula BAH, CAK ad angulum compofita communem BAC, \& fint latera triangulorum viciflim producta, ergo idem angulus aquiualet zam angulis internis oppofitis н \& в quam in alcero triangulo, religuis ad C \& K: Igitur quantum angulus $\boldsymbol{q} a b$ angulo K differt, tantum viciffim angulus c abangulo 3 diftat, thoc eff interpretando pro angulis, arcus obucrfos accipienes, ficilicer quantum arcus GE, GD differune, tantum Ni ab ipfis am , nam pro angulis $H, \& K$ arcus
arcubus NL, MIacceptis, \& qui communis habetur II ablato, eadem differentia inuenitur inter N, ML, qux erat inter NL, \& MI: Igitur eadem reperitur differentia inter $\mathrm{GE}, \& \mathrm{DE}$, id eft $\mathrm{LO}, \& \% \mathrm{O}$, qux inter NI, ML: funt ergo quatuor magnitudines LO, OI, MI, ML, in difiunctâ Arichmeticâ ratione, eodem fcilicet interuallo differentes, ergo extremæ ac medire fi iungantur duas magnitudines conftituunt æquales: fed $\mathrm{LO}, \& \mathrm{ml}$, faciunt arcum mo , reliqux or, \& In, faciunt ON , qui x quales funt: ideo arcus $\mathrm{MO}_{2} \mathrm{ON}$ quum fint pares, refidui GM, GN xquantur, \& cord x eorúdem pariter,ergo cum partes fint linearum $B G$, c G, erit g Punctum Reflexionis, \& Angulus b gC, à Diametro bifariam diuifus. Quoderat demonftrandum. At'quia nonnulli funt magis ad Criticem, quam ad Zetefin feu ad affequendum porifma procliues, ne videamur noua hac demonftrandi ratione, fponte voluiffe ab Euclidea difcedere, 'ducatur linea $\mathrm{CPR}_{\mathrm{R}}$, \& fint affumptx c c, R, xquales, (at in hoc liberum erit quoduis aliud fumere punctum) $\&$ in duobus triangulis CPG, \dot{R} PG: duo latera vnius GC, GP, funt æqualia lateribus duobus alterius GR,GP, \& angulus vnius GCP, æquatur angulo alterius GRP (nam fupra bafin funt in vno Ifofcele GCR) eidem lateri oppofitus : quum vero conftet de fpecie angulioppofiti reliquo lateri in vtroque triangulo, vt prxcipitur communiter in doctrina planorum triangulorum, difcrepante nullo: fequitur quod triangula CGP, RGP, æqualia, \& xquiangula fint: \& anguli deinceps
 ${ }^{\mathrm{B} G}, \mathrm{Co}$ funt à centro æqualiter remotr. Quod erat oftendendum.

TDem punctum \mathbf{c} faciliter affequemur, filinex \boldsymbol{b} d; CE, ad angulum compofitx illum bifariam diuidant, $\&$ linea dabit producta in bafe в C, punctum $F_{\text {, }}$ ex quo \& centro linea ducta in peripheriam fignabit idem \mathbf{G}, nec inter nouas conftruendi methodosfeponimus.

Caterum via Euclidea vbi infra non fuerit appofita facile intelligi poterit, ne eadem fxpius cautio au; diatur.

$$
\begin{gathered}
A L I T E R \\
\text { SOLVTIO SECVNDA. }
\end{gathered}
$$

Datis, vt fupra, circulo σ duobus punctis, illud idem efficere.
CInt puncta $\mathrm{B}, \mathrm{C}, \&$ tangentes'fiant b D, $\mathbf{C E}, \&$ aliz - ad centrum $A B, A C, q u x$ arcus refcindant $D G, \&$

EF, inequales (ex inæquali diftantia punctorum B, C) fecentur aqualiter \& ducatur per puncta fectionum нi linea, qua etiam in k bifariam fecta, per centrum eat linea kal. Dico effe punctum quxfitum: \&re bene agnita, eadem ratione quâ fupra magnitudines.MF, MG\&GO, IN Xqualiter fe excedent: \& ideo MN, GO, xquales fient, aut fi mauis Euclidea methodo ducta CPR, xqualia, \& fimilia concludentur triangula CLP, RLP: \& iterum conftabit propofitum.

$$
\begin{gathered}
\mathcal{A L I T E R} \\
\text { SOLVTIO } \quad \mathcal{T} E R T I A
\end{gathered}
$$

CIt circulus, \& puncta b, c. ducantur per centrum

$B \mathrm{ij}$.

circulumin punctis GF,HI, fecantes, per qux linex dux agantur $G F, \& H I$ conuenientes in puncto K (conuenire autem eft neceffe, ex conditione $\&$ inxquali diftantia à centro circuli punctorum B, C, à puncto deinde K , per centrum agatur linea KAL , erit in peripheria punctum L, quod problema perficiet: namaut prima aut fecunda methodo, vtfupra ex Euclide affumpta idem vt in reliquis concluderur, nec opereprxtium eft eadem repeti.

$$
\mathcal{A} L I T E R
$$

SOLVTIO QVARTA.

CIt circulus \& puncta b, c, vt fupra, esedem ducantur ω linex \bar{D}, с $B, \&$ в $, ~ C D, \&$ dux poftrem x ad concurfum producantur (cóuenire eft neceffe iux ta pŭctorum fitum) concurfus fit ad fuperiorem partem in F,

à quo per centrum agatur linea fGAM. Dico punctum g effe quod quaritur, quod fimiliter vna vel altera forma vt fupra facile concludetur.

SCHOLIVM.

Duabus proxime pramißis effectionibus, pulchrum fane videtur ac iucundum, vt nulla circinj intercedente opera perficiatur problema, aliquibus tam arduum, tamque reconditum, छु ot diximus, concurreredebent linea, nam ex punctorum inaquali diftantia parallelijmum recufant.

ALITER.
SOLVTIO QVINTA.

Stc circulus; \& puncta вc, ve fupra, agantur per cencrum $\operatorname{BAD}, \mathrm{CAB}, \&$ alix iungantur BE, CD,

anguli vero effecti B в $C, B D C$, bifariam lineis ex D , \& e fecentur, qux in F concurrant, (nam conuenire neceffe habent, quum fec, bif, anguli fint duobus rectis minores)à puncto $\begin{aligned} \text { e concurfus per cen- }\end{aligned}$ trum a ducta linea fag ad peripheriam, dabiturpunctum g quxfitum: quod quidem breui ve fuprafyllogifmo firmari poterit, \& methodo vtraque.

$$
\begin{gathered}
\mathcal{A} L I T E R \\
\text { SOLVTIO SEXT'A. }
\end{gathered}
$$

CItcirculus \&puncta bevt prius, \& ducantur linex tangentes $B D, C E$, ac dux tranfuerfales $B E, C P$,

anguli deinde effecti $B D C, B D E$, per $E F, D F b i f a-$ riam fecentur, \& ex puncto concurfus F (concurrere neceffarium elt, vt lupra in alijs diximus) $\& a b$ codem puncto F per centrum linea protracta, dabitur in peripheria vt antea g punctum, illud idem perficiens problema, quod vt in cateris duplici methodo confirmari poterit.

$$
\begin{gathered}
\text { ALITER. } \\
\text { SOLVTIO } \quad \text { SEPTIMA. }
\end{gathered}
$$

DAtis circulo \& punctis, vtfupra B, C, ducantur per centrum $B D, \& \in E, \&$ ad puncta $D \& B$, eifdem

eifdem erigantur; perpendiculares EF, DF; qux neceffario in F concurrent, quum anguliduo ad $\mathrm{E} \&$ D recti fint, ex puncto igitur F, per centrum linea agaturfga. Dico g punctum in perpiheria quxfitum perficere, cuius veritas, $\&$ in forma vtraque vt in reliquis oftendi poteft.

ALITER.
SOLVTIO OCTAVA.

Datis ovt fupra circulo EO punctis B, c, illud idem efficere.

Exim

CInt puncta B, c, à quibus ductis \& tangentibus, \&
Spercentrum lincis b $, C G, \& B D, C E$, vtrxque

producanturvfquead concurfum in $\mathrm{H}, \overline{\mathrm{I}}$, (concurrrere namque neceffepatet) \& lineaiuncta HI , diuidatur bifariam in L , ex quo puncto, \& centro a iuncta linea circulumfecet in κ \& m. Dico punctum к efficere problema : demonftratio, vt in reliquis, poterit inftitui. \&factum erit quod oportuit.

A LITER.
SOLVTIO NONA.

DAtis circulo \& duobus panctis B ; i, ducantur tangentes \& tranfuerfales linex BD, CB; \& B B; $C D$: differentia autem arcuum $D G, \& B F$, fit $F H: \&$

apponatur minori FF , deinde tota GH , bifariam fe: cetur in I per quod agatur \& centrum linea 1AI, erit puncum I in peripheria efficiens problema, fcilicetiunctisvtin alijs BL, CL, fiat I punctm reflexionis, \& LI, dirimat bifariam angulum BIC , ef quod oportuit:

$$
c^{\circ}{ }^{\mathrm{jj}}
$$

Ds REEtextoniti

ALITER.
SOLVTIO DECIM:A.

SIt circulus, \& puncta s, c, ducantur ve prius tan-

arcusdeinde fG,à lineis ad centrum comprehenfus fecetur geometrice in puncto H, vt fiat $\mathrm{FH}, \mathrm{ad} \mathrm{HG}, \mathrm{Vt}$ fe habent $D G, a d B F$, à puncto poitea H per A centrum linea ad peripheriam perducta fecer in x . Dico punctum $к$ efficere vt fupra in alijs problema: nam proter communem vt fupra demoniftrationem, funt
 arcus extremi fi iungantur, hoc eft, DH, \& medij hoc eft He, ita poftea arithmetice fe habent in ratione,
vt quantum $D H$, excedet arcum HE , viciffim KR , excedet DK : compofitiiterum extremil $\mathrm{HD}, \mathrm{DK}, æ$, quali- $^{\text {- }}$ tatem conftituunt, cum compofitis ex medijs $\mathbf{H} \mathbf{I}, \mathbf{K} \mathbf{~ B}$: fed dirimuntur à linea per centrum KA H . funtitaque femicirculi: linexigitur в $к$, ad ск, ad planum tangentem in puncto K , angulos conficiunt incidentix \& reflexionis pares: quod volebamus: ideoque.

LEMMA SECVNDVM.

Dicitur in promiffo problemate, vt arcus FG, diuidatur in ratione arcuum DG , ad EF , quod facile fiet; σ pro minus exercitatis apponere lemma boc placuit.

ω
It arcus $D E$ diuidendus in ratione arcus $B C$, ad $C D$: ducatur corda $B D, \& e x C$, per A centrum AC fecans $B D$ in G :iunctis $D E, B E$, ducatur ex G parallelagh, ipfibefecans de in H, ex quo \& centro afit

diameter Ag, erit diuifus $D E$ arcus in F, vt diuifus: fupponebatur BD in C. cordx \& arcus in doctrina finuum veniunt in eadem inter fe ratione: ideo linea $B G, \operatorname{ad} G D, V t E F a d F D: \& f i c$ fe habent etiam arcus \quad C, ad CD, vt arcus EFad fod. Quod facien:dam fumpfimus.

ADNOTATIO.

TGitur ad decem formas produximus conftructio: nem vnius problematis : \& nonnullas parum diftantes à pramiffis reiecimus. alteram debueramu* adnectere: quinfeorfim fubiungere libuit, quam \& nos etiam cogitauimus: fed quia illam à Proponente Maghetto intelleximus prouenire, nudam tamen fine vlla demonftratione, quam credere nos iuuat penes fe habuiff, interim noftra acceder, \& eft vt fequitur.

éAITER.

SOLVTIO UNDECIMA.

CIt circulus circa a centrum, \& duo puncta B, C, Dextra: oportetillud idemvt fupra in alijs facere.

 parallella ipfi в \bar{c}, \& hacc fecetur in K , vt fit ita FA ad $A \in$, vibis, ad KC , ex quo punłor, per centrum A ducta linea ad peripheriam, fecabit illam, $\&$ fit in punto L. Dico illud effe punctum quod perficit problema.

24
De Reviexionis

Quoniam enim eftvt $B K, \operatorname{adKc}$, ita $F A, 2 d i G$, hoc eft, ita in ad ah, erit vt biodar, itabl, ad Li, \& pariter vt CKad Ah: ita Cl ad Lh, \&
 CK ad Cl, vt Ah, ad lh, \& conuertendo, permutandoue: ve il ad in, ita AI ad AH: ergo anguli bla, Cla, xquales funt, \& à linea le bifariam quum fecetur angulus $B L C$, \& linea diuiden sper centrum tranfit, ideo linex bl, lC, ab eodem xqualiter diftant: vnde \& L fit punctum reflexionis, \& de circulo refcinduntur portiones xquales : quod erat imperatum \& demonftrare oportebat.

ADNOTATIO.

'ADNOTATIO.

PLuribus itaque medijs hactenus conftruximus, \& oftendimus problema, \& fane non difcedendo à planorum methodo, vt nullo modo recurrendum fuerat ad aliquod improprium genus: at fupraadnotauimus problema hoc coincidere cum illo Opticorum, quando in caua peripheria inquiritur dereflexionis puncto, cui a ddit, debere lineas angulum facientes effe in circulo pares. Vt igitur ad omnia quæ ex vario fitu punctorum contingere poffent fympromata illud idem efficiatur : hæc fequentia ordinemus.

> PROBLEMA SECVNDVM.

ωIt circulus , \& duo puncta B, cintra , inaqualiter ramen à centro diftantia, oporteat pes duas

D

xquales in circulo lineas, à dictis punctis punctum reflexionis inuenire. Cadant primo in diametris diuerfis pancta $\mathrm{B}, \& \mathbf{C}$, iungantur $\mathrm{BC}, \boldsymbol{\&}$ per centrum BAD, CAE : deinde linea BC fecetur in F, vt portiones eiuldem fe habeant in ratione B D , ad $\mathrm{CE}, \&$ à puncto illo F , per circuli centrum tranfeat linea ad peripheriam in G puncto pertingens, quod illud eft quod abfoluit problema : iunctis namque $B G$, CG, \&ad peripheriam perductis in H, I, oftendentur HG, LG xquales, \& angulum bGC, à linea diametrali bifariam diuidi. fumatur punctum 1 , ve fint bg, igxquales, vel alibi dux xquales auferantur de bG, ig, \& iuncta Bi, fupra bafim anguli xquales fiunt ad $I \& B$, \& in duobus triangulis $I \mathrm{KG}_{\text {, }}$ $B K G$, duo funt lateria $G, G K$, duobus lateribus I_{G}, © к x qualia: $\&$ angulus vnius, x qualis angulo alrerius,
ad idem latus oppoftus : quum vero conftet de feecie reliquorum angulorum tertio congruo lateri oppoficorum, ve in doctrina de triangulis pracipitur: ideo triangulus GKı, triangulo $\boldsymbol{\text { GK }}$ в xquatur, \& omnia vnius mébraad omnia alcerius membra, vnde anguli BGK, IGK pares fiunt: \& eorum oppofitiarcus IO, OH: ergo reliquide femicirculo $\mathbf{G L}, \mathbf{G H}$ æquantur, \& fimiliter corundem cordx: quare conftar propofitum.
SCHOLIVM.

LIneam diximus diuidentem bifariam angulum b GC, per a centrum tranfire; vi fiant bG, GC, xquales, nam vt infra videbitur, bifariam angulus verticis diuidi potelt : \& line $\begin{aligned} & \text { illum conftituentes in }: ~\end{aligned}$ circulo portiones relinquere inæquales.

$$
E E M M A T E R T I V M
$$

Datalinea vnico fecta puncto', nouo altero fecare, vit ratio cadem fiat totius cum adiecta, ad ipfam adiectam , qua erat partium linea data inter \int e.

SCilicet, fit AB fecta in $\mathrm{C}, 2$ oporteat illiaddere portionem, vt:B D : ita vefiat $A \subset, \operatorname{ad} C B$, ficuti $A D$, to-

ta compofira ad adiectam BD, res per quam facilis eft :fumatur differentia $A C$, fuper $C B$, id eft ponendo e C, CB xquales: \& fiat vt Ae, ad fC: ita tota D ij

AB, ad bD, erit componendo, vt ADcompofita tota ad DBadiectam, ita A C, ad CB.

$$
L E M M A \quad Q V A R T V M .
$$

Si detur ad, fecta in в, ita noso fecanda puncto, vit fiat AD, ad DB, ita AC ad CB_{B}.

PRo inueniendo puncto c, fecetur abin c, vt fiat $\mathbf{A D}, \mathbf{B D}$, quod eft Euclideum.

LEMMA QVINTVM.

 EG angulus dea fit rectus. Iunctis lineis be , Cer.

DIco angulos bea, cba æquales effe. Fiat ex pun:cto a linea HAF, xquidiftans DE, \& producta BC, in F, duo erunt triangula $H E A, F B A$, rectan, gula in A: nam rectus eft angulus DeA, ex hypothef_{1} : igitur duo quadrata $H A, A \mathrm{E} æ$ qualia duobus qua-dratis EA, AC: ablato igitur quod commune eft
 \& latera eorumdem, ideo totus triangulus, toti triangulo, ergo anguli в в а , сед жquales fient: patet ergo quod ex dato angulo recto DEA, \& linex partes fehabent, vt b Dad DC, ita BA, ad AC: anguliduo $a b i j f d e m$ punctis, fcilicet BEA, 4 EC funt pares. Quod erat demonftrandum.

PROBLEMA TERTIVM.

Circulodato E' duobus punctis in ona diametro, inaqualitertamen à centro diftantibus: illud idem efficere.

- Int puncta in circulo $\mathbf{b} ; \mathbf{c} ; \&$ linea connectens Silla tranfeat per a centrum : fiat per lemma tertium, vt differentia maioris diftantix ad minorem, ita linea tota BC adaliam, \& fit CD : erit vt bo ad

DC, ita $\overline{\mathrm{A}}$, ad $\overline{\mathrm{A}}$: : à puncto D ducatur tangens $D_{B}, \& \operatorname{ad}$ punctum E, linex alixiungantur $B E, A E$,

CB: quia angulus $\mathrm{D} \boldsymbol{B} A$ effrectus: \& ratio BD ad DC, eft ve ba ad ac: \& anguli bea, abc funt æquales : at linea angulum bec bifecans tranfit per centrum : ergo latera $\mathbf{E f}, \mathrm{b} \boldsymbol{\mathrm { G }}$ in circulo, vel circuli portiones recifx, xqualesfiunt. Et hoc erat oftendendum.
SCHOLIVM.

TAbetur premiffum problema in terminis', apud Vitellionem libro vj propofitione xvij. \& apud Pappum in Commentarijs docti Commandiniad propofitionem lvij. libri vj. ex quibus, ab alijs quide Opticis fripferunt reperitum.

PROBLEMA QVARTVM!

Dato circula, © duobus punctis : altero intra;" altero extra, in diveryis diametris : illud idem efficere.
SInt puncta b, c, $\&$ circulus circa \bar{x}, iuncta linea ${ }_{B C}$, portio que in circulo cadit bifariam in E

fecerur, \& per lemma quintum reperiatur punctum D, taliter vt fit bD, ad DC, vtbe, ad $\mathbf{E C}$, \& quum fit $D G E$ angulus rectus, eruntiuncta linex $C G, G E$, bG, anguli bGE; $\mathbf{B G C}$ æquales, $\&$ etiam linex $\boldsymbol{G I}$, GH\&'xquantur, quum tranfeat $G A$, per centrum daticirculi. Et factum erit quod oporruit.

$$
S C H O L I V M T R I M V M
$$

In fcolio problematis fecundi; diximus punctuons baberi pofle, aliquando Eס angulum bifariam foctum per lineam, non diametrum σ° tunc in circulo conftituentes angwlum lineas inaquales effe. quod vt demonfiremus:

SIt circulus circa a centrum, duo puncta $\boldsymbol{b}, \mathrm{C}, \&$ linea iungens non per centrum tranfeat, portio

illius qux in circulum cadit, vt cinon bifariam feceturins, vt Ce, \& CF, xquales fint, deinde perlemma tertium, ita fecetur, vt fe habeat bD, ad DC, ficuti be аd ес, \& circa de circulus defcribatur, \& quum fuerintad G punctum (in quo $D G E$ femicirculus datum circulum fecat) ductr linex $\mathbf{B G}, \mathbf{G E}$, GC, DG, erit angulus DGE rectus, \& anguli BGE, CGE, æquales, per lemma quintum: ita vt productx linex in circulo $\mathrm{H} G, G \mathrm{G}$ inxquales fint: tamen angulus HGK, diuifus eft bifariam à linea GE, qua per per centrum non tranfit : ideo punctum reflexionis daturà punctis B, C, non tamen lineæ̌ refcindunt de circulo portiones æquales. Quod demonftrareoporrebat.

$$
S C H O L I V M \quad S E C V N D V M
$$

EX hifce innotefcit lineam, qux bifariam angulum bgc diuidere debet, effe trianguli dge rectanguli vnum laterum $\&$ punctum bifectionis fieri ac reperiri in communi circulorum fectione: quâ de re inferiùs fermo recurret.

$$
P R O B L E M A \text { QVINTVM. }
$$

Dato circulo, © duobus punctis, vino in peripheria, altero extra in ona diametro, illisd idem efficere.
CInt puncta \mathbf{B}, \mathbf{c}, ducta per centrum linea, fiat vt $\omega_{C B}$, ad bF: ita CE ad EF, \&in circulo aptata

E

 Dico punctum н efficere problema, id eft iunctis CH, $\mathbf{~ H A}$ angulos b $\mathrm{ha}, \mathrm{CHA}$, effe æquales: ducatur enim da. In duobus triangulis DAG, CAG, funt duo latera DA, A G vnius, x qualia duobus lateribus alterius \triangle C, AG: \&anguli ADG, ACG xquales, \& quum de fpecie conftet anguli tertio lateri oppofiti: fequitur duoilla triangula æqualia \& xquiangula effe: quare anguli deinceps ad G recti fiunt, $\& \mathrm{Dc}$, bifariam lecta: ideo in duobus alijs triangulis $\mathrm{DGH} \& \mathrm{CGH}$, rectangulis in \mathbf{G}, duo latera $\mathbf{D G}, \mathbf{G H}$ duobus $\mathbf{C} \boldsymbol{G}$, G \boldsymbol{H} xqualia : ergo \& bales DH, HC, xquantur, \& anguli $\mathbf{C H A}$, bнat pares funt: ideo conftat propofitum. Et punctum H eft reflexionis quafitum.

nutumigitur Triangulum eft den equicrurum, ve Diff. ferentia dB, inter Bafin, \& Crusab, vel de, fit ad DA Bafin, ficut Quadratum en, vel' ed, ad Quadratum Compofitzex Baleda, \& Crure ea. Quod erat DemonEtrandum.
PROPOSITIO DVODECIMA.

THEOREMA PRIMVM.
Si fuerit Triangulum Aquicrurum; σ° Differentia inter Bafin, EG alterum e Cruribus fit ad Bafin, ficut Quadratum Cruris ad Quadratues Compofita ex Bafe, E'Crure; Que à Termino Bafis ducetur ad Crus Linea Recta, ip/ Cruri Equal̇̇ fecabit Bifariàm Angulum ad Bafin.
Ef Vietæ, in Supplemento Geometrix, Propo: fitione xxi.

REpetatur antecedens Conftructio: Actaque de fecet quoque Circulum inf, \mathbb{Q} iungatur af. Dico AF Bifariàm fecare Angulum rad. Quoniam enim ex Hyporhefieft, vt DB adDA, ita Quadratumex AB, ad Quadratum ex DC. Ideò eft vt $\mathrm{DB}_{\mathrm{B}} \mathrm{ad} A B$, ita quodfit fub $D A, A B$, ad Quadratum exdC. Sed DB ad DE, feu $A \mathrm{~B} ;$ eft vt DF ad DC . Quare eft DF ad DC, vt id quodfir fub dA, $A B$, ad Quadratum ex dC. Erconfequenter eft dFad Ab, feu DB; ficut Da ad DC, Et fubducendo eft DF ad FR , ficut AD ad AC. Quare connexa EC , fit ipfius fa Parallela. Itaque Angulus mcd, Angulo fad eft E qualis. Sed Angulus bad, Duplus eft Anguli rcd, cùm ille fit in Centro, hic in Circumferentià. Angulus igitur end, fectus eft Bifariàm à ReCtâ AF. Quod erat oftendendum.

PROPOSITIO DECIMA-TERTIA.

THEOREMA SECVNDVM.
Si fuerit Triangulum Aquicrurum, Que autem à Termino Bajis ducitur ad Crus Linea Recta ip/s Cruri Equalis, fecet Bifarians Angulum ad Bafin, Angulus ad Verticem Equicruri Sefqui-alier eft vtriugque Angulorum ad Bafin.
Eft Viet , in Supplemento Geometrix, Propofitione xxir.

CIt Triangulum abc, habens ab, ac, Crura aqua-- lia: à cuius Termino c, cùm ducitur ad Crus ei $O p$ pofitum Recta Linea cd, Cruri aqualis, ipfum acb Angulum Bifariàm fecat. Dico Angulum BAC, effe Sefquialserum Anguli $A B C$, feu $A C B$. Quoniam enim à Termino C, Bafis Trianguli equicruri ABC, ducitur Recta $C D$ ipfiCruri AB,vel AC equalis: ideòAngulus ACE Exterior, Triplus eft Anguli $A C B$, vel $A B C$. Qualium itaque Angulus ABC, feu ACB, Partium eft Duarum; talium Exterior anguli DCB, eft Partium Sex. Angulus verò DCA, qui Dimidius eft Anguli $A C B$,eorundem eft vna, vtetiam Angulus DCB. Conftant igitur DCB Angulus, \& fuus

Exterior talibus Seprem Partibus: valent autem duos Rectos, ficut Tres Anguli Trianguli. Cùm igitur Anguli ABC, ACB, quilibet fint Duarum Partium, Angulus bac, relinquitur carundem Trium. Eft igitur в A C; Sefqui-alter veriufvis Anguli abc, feu Acb. Quod erat Demonitrandum.

> PROPOSITIO DECIMA-QVARTA.
> THEOREMA TERTIVM.

Si fuerit Triangulum Equicruram, cuicis Angulus. qui exiftit in Vertice, (it Sefquialtervotriusque Angulorum qui funt ad Bafin, \mathcal{E}° a T Termino Bafis du:catur ad Crus Linea Recta ip κ Cruri Equalis, onde Triangulum rurfors fiat Equalium Crurum, quorum vnum eft educta fecans, alterum Crus Primi non fectum, Erit in ifto Secundo Triangulo vterque Angularum qui funt ad Bafin, Triplus. reliqui.
Eft Vietæ, in Supplemento Geometrix; Propo: fitione xyili.
CIt Triangulum abc, habens Crura ab, AC, equalia; D\& fitAngulus BAC,Sefqui-alter vtriufque Angulorum $\triangle B C, \triangle C B$, Et à Termino Bafis C_{2} ducatur in Crus $A D_{2}$
pares, èx equalitate oppofitorum arcuum $I R, R O$, ergo bafes co, ol æquales fiunt, \& triangula prorfus aqualia : ideo anguli CLA, BOA, æquales funt: fed angulus COA, xquaturangulo LID: quia arcus l G, \& O I pares funt, \& communis is fiapponatur, erunt arcus compofiti gs, \& L P æquales: \& anguli ipfis infiftentes erunt x quales $G O P$, $I \perp P$, fed angulus LIP xquatur fuo coalterno b 1 I: ergo angulus bli xqualis fit angulo cog, hoceftca: fed lai linea per centrum dirimi per xqualem angulum : igiturarcus MI,NI, xquales funt, \& refiduiad femicirculum LM, LN, xquales: vade conftat propofitum.

$$
P R O B L E M A \quad D E C I M V M
$$

Datis vt fupra circulo, σ duobus punctis extra, σ linea illa connectens non tranfeat per centrum. illud idemoperari.
CInt puncta $B, C, \&$ per centrum tranfeat linea il-- la connectens : ducantur dux tangentes ad eam:

dem partem BD, CE: concurrant producta in F à puncto deinde F fuper $\boldsymbol{B} C$ demiffa perpendicularis fG, \& ad peripheriam protenfa, fecabit in \mathbf{H}. Dico punctum \mathbf{H} efficere problema : iungantur $\mathrm{DH}, \mathbf{C H}$, \& per centrum hai, crunt duo triangula $\mathbf{C G H}$, в G н , rectangula: ideo anguli нсв; н в с tantum differunt quantum reliqui duo $\mathbf{B H} \boldsymbol{G}, \mathbf{C H G}$, diaifo igitur angulo bHC bifariam per diamerrum hai, erit differentia angulorum arcus 0_{1}, qui tranllatus in ML, fiet arcus OL, æqualis arcui $\mathrm{PN}, \& \operatorname{arcus} \mathrm{NL}$ ita diuidatur bifariamin I , vt $\mathbf{P O}$ in H : totus igitur o 1 , arcus x qualis fiet arcui P I , \& refiduus 0 н , $x q u a-$ lis Ph . Quod erat demonftrandum.
SCHOLIVM.

NE alicui videatur infirma ratio premiffa, \& fponte ab Euclideâ me difceffife formâ : ducatur Ct , linea abfcindens æqualia latera $\mathbf{C H}, \mathrm{HT}$, funt ergo.
ergo anguliad c, \& т fupra bafin æquales: duo vero latera duorum triangulorum $\mathrm{CL}, \mathrm{HL}, \& \mathrm{ST}, \mathrm{H} \boldsymbol{S}$ æqualia habentur, gum angulo vni laterum oppofito xquali : \& conftat de feecie anguli oppofititertio lateri. Per ea igitur quę de triangulorum traduntur doctrina, erunt duo illa triangula \& xqualia, \& xquiangula: anguli ergo deinceps ad $s, x q u a l e s$; ideo recti, $\&$ xqualia latera CS, ST: ergo angulus в н C diuiditur bifariam per lineam нs per centrum: \& linex в \boldsymbol{H}, $\mathbf{C} \boldsymbol{\text { н }}$ efficientes illum, relinquunt portiones $\mathrm{H} P$, H O xquales in circulo, fiue arcus PD, fiunt æquales: adeo vt nullus intercedere queat fcrupulus.

SCHOLIVM SECVNDVM.

$\boldsymbol{F}^{\mathrm{X}}$ hactenus expofitis (nif fallor) omnia qua pro 2argumento furcepto contingere poffunt fympromata adnotata funt : led quia noua poffet ad ampliffimam triangulorum doctrinam propofitio excogitari: obiter problema fequens adiecimus, à nemine (quantum mihi conftat) productum : cuius conftru\&tio facillima traditur.

PROBLEMA UNDECIMVM.

Datá plani trianguli bafe, ơ line qua angulum verticis fecet bifariam, laterumue ratione, oporteat exhibere triangulum.

It linea bс, ratio laterum rad s, linea d bifecans angulum, diuidatur bafis вс in Δ puncto, in rasione data, \& facto centro A , interuallo linex o defri-

Batur circulus, \& a vicadere accidat puncta \mathbf{b}, \mathbf{c}; eff.' cietur problema: in hoc cafu, ambo funt extra circulum : ideo fequatur propria conftitutio : nimirum tangentes agantur B F, CB coeuntes in \mathbf{G} protracta; ex quo puncto per centrum linea fit $\mathbf{G O A H}$, \& poré tio circuli or ponatur in il. Dico punctum x effe quod quæritur, hoc eft fi producantur BC, CL, rerecare de circulo portiones $L M, \underline{L}, \&$ angulos

Cit, bia, continere xquales: ideo in proportione bafis ba ad ac fe habebunt latera trianguli bl, \& LI: ideo factum erit quod oportuit.

SCHOLIVM.

PRo quocunque alio cafu, in quo puncta diuerfimode fe habeantintra, aut mixtim, intra \& extra, aut in péripheria, promiffa funt problemata id efficientia : fed aliter ex antiquorum traditis acfacilius exequeturvtinfra.

CIt igitur bafis b \mathbf{C} diuifa in A in ratione data R ad s, vt prius, \& per tertium lemma portio reperiatur

CD linex: ita vt fiat $B A a d A C$, tanquam $B D$ ad $D C$; \& circa ad, defcribatur femicirculus, \& in eolinea
 $2 \mathrm{~d} q u 0 \mathrm{~d}$ fiducantur $\mathrm{BE}, \mathrm{CE}, \mathrm{DE}$, conftructum erit BEC , triangulum quefitum: quoniam in circulo DEA angulus eft requs, \& fe haber in linea BD ad DC , vt BA ad AC, ex lemmate quinto erunt anguli bea, CEAXquales: \& factumerit quod oportuit. Verum, tamen eft in hoc cafu, quod exquibulliberdatis non conftruetur

triangulum:quod in priore non cótingit. Neque enim ex omnibus datis cóftrui poterit triangulum, quum fit de genere determinato. Ideo quando linea a e diuideredebet angulum в в с bifariam, fi minor non fuerit ipfâ AD, q̧ux recto opponitur angulo, feruatâ proportionelaterum, conftrui non porerit: at quam proponetur poffibilis, nulla fupererit difficultas.

PROBLEMA DVODECIMVM.

Datis circulo, σ duobus punctis inequaliter à cen'tro diftantibus, oportet ab ipfis ducere in peripheria consexa lineas ad angulum, vt protracta in circulo relinquant dusas aquales chordas: Ev erit. eiiam illud reflexionis punctum in conuexo.

1It circulus circa a centrum, duo puncta b, C, à 1) quibus fiant tangentes $\boldsymbol{b} \mathbf{D}, \mathbf{C E}, \&$ inclinentur fimul ad angulum, ve bFC: quem bifariam fecet deinde linea fig, \& circulum in l puncto. Dico hoc punctú efficere problema: nimirum iunctis lineis bim, CiK, portiones in circulo LM, in fierixquales: fecerur bifariamangulus BIC, linea $N \perp A L$; $\&$

zqualis $\overline{\mathrm{C}} \mathrm{I}$, ponatur $\circ \overline{\mathrm{I}} \overline{\mathrm{F}}^{\prime} \&$ iungatur co : in duobus triangulis CNi, ONI, latera duo CI, in paria duobus alijs 10 , in funt : \& de feecie anguli oppofiti tertio lateri conftai : ideo funt triangula, xquiangula \& xqualia: \& anguli deincepsad N æquales, ideo reCti: ductis deinde $\mathrm{L} M, \mathrm{I} x$, inalijs duobus rriangulis LMI, Nio funt duo anguli vnius, duobus angulis alterius x quales: fcilicer N IO , ad vertices MiL , \& anguli ad M, N reeti: igitur reliquus $M L 1$, crit Noi reliquo xqualis : idem in duobus triangulis $L K 1$, \& CNI , oftendetur: Etcum CNI, ONI fint xquales, \& xquales fint LMI, iKI, vade anguli MIL, KIL, \& eis verticales CIN, OIN Xquales: ideo im, iK in circulo pares fiunt, \& punctum I refpectu pundorum \boldsymbol{b}, \mathbf{c}, fit punctum reflexionis. Quod erat demonftrandum.

© $L I T E R$,

DECIMVM-TERTIVM:

Datis \ddot{j} dem vot Jupra, idem punctum inuenire.

SIt circulus circap A, \& fint puncta b, c , ducantur vi prius tangentes BD, CB, \& alix tranfuerfales BE ,

CE, differentia comprehenforum arcuum fub $B I, D M$, EN, fcilicet BL, ponatur vt ante fupra minorem portionem, vel chorda MD, ex NL eadem fiat: \& reliqui arcus DKL, fiue DIL, bifariam per lineam KAIF diuidantur: in circulo punctum I quafitum perficier, namque protractis bif, cig lineis, relinquentur in circulo portiones in, ic, equales: \& punctum 1 reflexionis erit. quod patebit per reperionem eorum qux in antecedente affumpta fuerunt nam trian.
 dentur : \&ideo factum fuerit quod oportuit.

ALITER.
PROBLEEAA DECIMVM-OVARTVM: I_{i} demmet datis, ovt fupra, illudidem efficere.

-Int puncta $\mathrm{B}, \mathrm{c}, \& \operatorname{ad}$ centrum A ducantur BA , -CA, \&alixtangentes bD, $\mathbf{C E}$, à punctis vero.

d, i fiant perpendiculares fuper AD; ipfa dom: \& fuper AC alia $\begin{gathered}\text { x } \\ \mathrm{L}\end{gathered}$: deinde arcus ab iftis interceprus, nempe $M \downarrow$, bifariam fecetur puncto i. Dico quod ilfud, erit reflexionis : ve antea, agatur per. centrumiaf: \& à punctis B, C, ducantur per x linex bin, cin. Vtin fuperioribus factum eft, poterit ordinari demonftratio, vt iam repetere prorfus videatur ociofum : \&intentum habuimus.

PROBLEASA DECIMVM-QVINTVM

Pofitis ïfdem, vt fupne, illud idem affequi:

CInt \quad, с puncta; tangentes в ; ; св: tranfuerWales vero B B, $C D$: ponatur minor chorda $\mathrm{E} G \mathrm{Cx}$

alcera parte, fiue ex F puncto in Fm ; \& arctis mhe. flue mie bifariam diuidantur lineâ har. ductis deinde bil, cik: reliqua vt in fchemate concludentur,\& portiones IL, IK xquales fieri, \& punCtum 1 illud reflexionis. quod quafitum fuerat, ve in alijs fupra demonftratum eft.

Hilce igitur, \& abunde problemati, \& plus quam fatis
fatis Optcis videtur factum, ex ipfis Geometricis fontibus, abfque eo quod in confilium veniant effe Ctiones ignobiles, nec fcientificx.

$$
V L T E R I V S
$$

QVia fere eodem tempore ex occafione quartio~ num Algebricarum inter aliquos $\&$ ipfum Maghetum, quxdam exfufcitata fuerat controuerfia, pro qua eciam, $\&$ in publicum opufcula apparuerunt, vnde authores in diuerfa fuam propugnant opinionem : hîc obiter à nobis afferetur examen cuiuldam Geomerrici problematis : ex quo ratiocinio facile in aperto erit, quid res ipfa es natura requirat: neque hifce meum intelligatur aperiri fenfum, \& per me quilibet in fuo abundet, nifi vt cenfendum exiftimo, potius controuerfia fiat in modo quam in fubltantia. Difputationis igitur ftatus in hoc harer, an in multiplicatione Algebrica, dum in altero fint radices, \&in alterogradus aliquis fcalaris, vt procedar multiplicatio, ficuti numeri ad formam radicum reducuntur, ita etiam gradus fcalaris fit eleuandus, verbicaufla, proponitur $\gamma=\frac{1}{4}=$ ducendumin $\quad \gamma \frac{1}{4}-\frac{1}{2} x$ quod eft inquirere quadratum, dum ex lege Logiftices $\frac{1}{2} 2 \mathrm{ve}$ $\operatorname{cum} \nu \frac{3}{4}$ poffir duci, fit $\gamma \frac{3}{4}$ pro gradu 3 quem habuir, fit poft reductionem illud re apponendum, aut fignum z refpondens radici $? \&$ hrceft tota quaftionis concertatio. Inva igitur opinione eft In altera opinione,

$$
\frac{\frac{1}{4}-v \frac{3}{16} x}{\text { Factü } \frac{3}{4}-v \frac{3}{4} x+\frac{1}{4} 8}
$$

In prima fignum $\because=v \div 4$, In fecunda fignú $\left.-v^{\frac{3}{4}}\right\}$ non adficit gradum ${ }^{2}$. etiam cópleçitur gradū ${ }^{\text {z }}$

Ut igitur videatur quid ip/a requirat natura rei, propono ratiocinium ex Lusdolpho defumptum, छ̋ Geometria aptatum.'
CIt circulus cuius diameter в \bar{C}, in eo latus infcri3 pti æquilateri triangulic D, fuee angulus $D A C$

inifecandus", quod quidem per problema ñonum, aut commadius per problema decimum. quintum inftauratx Geomerrix a nobis nuper editx geometricèfiet, \& fint $C F, P R, E D$, inngantur $P D, C E, \& \varepsilon$ perpendiculares fiant $\in, F H$, fuper $\subset P$: veluti $\&$ ${ }_{F} I$, fuper $B C$, qua etiam producaturin K, peripherix punctum : his ita conftructis, ponatur pro via qualibet CF, FE, ED, quod fint I ze, \& diamerer circuli fit 2 , unde ex elementis latus $C D$, trianguli
 erit $r \frac{3}{4}+\frac{1}{3} x, \&$ iuxta primam methodum quadratum CH fupra fuit: $\frac{1}{4}-v^{\frac{3}{4}} x+\frac{3}{4}$.

Si auferri intelligatur ex quadrato FC , id eft I 3 , refidurum five $\frac{3}{4} z^{3}+v^{\frac{3}{4}} x-\frac{3}{4}$ erir quadratum ${ }^{1} H$ H: Haic f_{2} accedar quadratum $D H$; hoc eft

DH $V^{\frac{3}{4}}+\frac{11}{2} x$
flue $z \subset x^{\prime}$,

$* \frac{3}{4}+\gamma-\frac{3}{4} x+\frac{1}{4} z^{2}$.
Latus igitur PD; erit $v_{. z}+v z_{3}$, \& hoc ferue. tur.
Aggrediamur modò aliam inueftigandì eiufmodi latus formam, \& fit differentia quadrari fC à quadraco diametri. B, , hoc ell quadratum $B f, \&$ quum diat meter fuir pofita 2 , quadratum $B \mathrm{~F}$ erit $4-\mathrm{I}_{3}$ \& ciug latus $\gamma_{1} 4-1$ z: \&c quum Fit normalisidacta fit, triangula $B C E \subset E I$; fimilia funt, \& lareua fibi refpondent homologa, quaneivt $B \in 2 ;$; adl BE $x_{1} 46-13$: itafliz, adfi.

$$
\mathrm{G}^{\mathrm{ij}}
$$

sz Derefiexionis
Et vt magnitudo fecunda cum tertia commode duci poflitad quadrata eleuentur, vt BC2, аd BF4-13: itafer ${ }^{2}$ adfr.
\& facta multiplicatione fecundx \& tertix magnitu: dinum prouenit $4 z^{8}-1^{z z}, \&$ eius latus ν. 4 . $z^{z-1}{ }^{z y}$, Quod fi à primâ analogix magnierudine BC diuidatur, erit $F I, \underline{V_{1}} \frac{z^{\prime}-i z z,}{2}$
\& eius duplum pro ipfa $F K$ (auferendo diuiforem. 2) erit $\gamma .4 z-1{ }^{3 z}$, fed FK \& FD x quales funt, erat enim $F D$, vt fupra $v 1_{z}+\nu z_{3} e$, quare duo hxe prorfus $æ$ qualia funt,

$$
v .4 y-1 z z=v .1 z+v 3 x, \text { \& eorum }
$$ quadrata $4^{3}-1 z z=1 z^{2}+v 3^{2}, \&$ auferendo fimilia : $3^{\dot{z}}-1 z \forall=\nu 3^{\text {z }} \& \&$ diuidendo per zexqualia erunt $3^{u e}-1 \mathrm{C}=v 3$, fed quando tertia pars anguli vel arcus accipitur, illa cadem magnitudo repericur.

Videamus deinceps quò nos ducat methodus al. tera, qux precipit cum numero adiiciente; eleuari etiam gradus.

D H fubtrahendo feilicet CH quadratum ex EC qua: drato, \& relitqua vt fequitur.

$$
\begin{aligned}
& { }_{3} \overline{\mathrm{~F} C} \overline{\mathrm{C}} \overline{\mathrm{I}} \\
& { }_{z} \mathrm{CH}=\mathrm{I}_{\gamma}^{z}-\boldsymbol{\gamma} \frac{3}{4} z+\frac{9}{4}+ \\
& \frac{3}{4} y+\nu \frac{3}{4} z-\frac{3}{4} .
\end{aligned}
$$

cui addatur $\mathrm{DH}_{\frac{4}{4}}^{4} z+\gamma^{\frac{4}{4}} z+\frac{4}{4}$. Et fumma fiet quadratumex FD,

$$
\mathrm{DF} \Longrightarrow 1^{3}+\nu 3^{3}
$$

aut z ex FK illiæqualis, \& erunt æqualia vtin altero epilogifmo fuperiore $1 z+\nu 3 z=4 z-1{ }^{z z}$,
 \& diuidendo per commune fignum $8,23=3-18$, in priore vero fupputatione erat $\gamma_{3}=3^{2 x}-\mathrm{IC}$, vnde fequiturxqualia fieri $3^{2 e}-1 \mathrm{C}=3-1$, quod nequit fieri, nifi in cafu quando valor ee eft vnitas, qua non immutari magnitudines notum eft.

Igitur fecundùm exigentiam rei videtur methodus prior iuxta naturam progredi, quod animaduerfum ab aliquibus cum Stiphelio in confımili contingentia enunciari queat.

Obferuabis autem quod in ifta particula $v_{3} 648$ z hoc fignum 3 pofitum eftà parte dexterâ, reputatur profignoifto \varkappa, propter fignum hoc v_{z}, quod ftatà parte finiftrâ. Nihil igitur operari cernitur eleuatio gradus, at quifque quò magis lubet proxime accedat.

54
 DeRevexionis

PROBLEMA DECIMVM-SEXTVM.

Datis duobus punctis, wno in circulo, alio extra circulum:, vel vtroque extra circuluses, poßibile eft invenire punctum incircumforentia daticirculi, ita vt angulum contentum a lixeis à pradictis punctis ad punctum inuontum ductio, diuidat per aqualia, linea per centrum in illo puncto circulum contingenti occurrens.
Ef Vitellionis propofitio cxxxv. libri primi; \& Alhazeni propofitio $\times \times \times v j$. libri quinti.
SIt circulus circa centrum \mathbf{c}, \& dao puncix pofitione A b, (nec alizer fierioporter, fialterum in pe-

ripheria fifteret) problema conftruere; vt impera: tum eft.

Ducantur linex AB, \& AC, portionis autem interceptr De, fit femiflis D F. Dico punctum F effe illud in peripheria quaffrum. Erigatur \mp к fupra C F, in \mathbf{x} puncto ad angulos rettos, ssin'producta b \boldsymbol{F} arfumatur $F G$ xqualis dectax $A F$: anguli igiturin ariangulo AfG: (iuncta nimitum AG) funt fag, fica, fupra bafin Ifofcelis : ergo xquales, \& quum duo Hatera AF, FH (educta tedicet C F in H) duobus laceribus FG, FH angulive duo óppoffic, doorum criangulornm AFH, $\mathcal{A F H}$, xquales' ideo prorfus xqualia funt duo illa trianguta, \& anguli deinceps н rquales, hoceft recti: ideo ag, xquidiftans ipfi Kf, ergoangulíagf, \& bfointerni, \& externifunt pares, nec non \& coalterni gaf, AFK, at duoangulifag, fga, erant xquales, ideo angulus b fa diuifus eft bifariam, lineâ k f, qux adextremum diamerrifuper F puncto erecta eft: ideo ad angulos rectos. Igitur factum eft quod oportuit.

$\mathcal{A} \mathcal{D} O T A T I O$.

MEthodotunc breuiffimâ quaftiones abfoluun: tur, quotiefcunque ipfius naturx femitam ingredi contingat, à qua longius digredientes difficiliorem inueniunt folutionem, \& tunc frpius ab alijs carpi folent fi forma efficiendi elegantior detegatur. Praftaret fortaffe hic exfrribi tria illa Vitellionis \& Alhazeni problemata à nobis emendata, \& abipfis tantum à rectâ digreffis, methodo, vt ignorarent ex inuoluto difcurfu fe fe expeditius liberare, quàm $a b$ opere ipfo mechanico fubfidia implorando, quod eft
 nimium à preceptis Geometrix declinaffe: atilla hîe referentes, effer citra oportunitatem ftudiofos onerare, \& aduerfus eorum genium, qui medullas inquirentes rerum propria augeri in volumen opufcula refugiunt. Mirum fane effe deber, quod ex tor qui de Opticis fcripferunt Authoribus, ad reformandum ram nobile \& clafficumargumentum, fupplendaque quailli deeffe videntur, ftudium hactenusapplicuifet nemo. Cærerum de puncto reflexionis libantes cum Opticis egimus, phyficè namque differentes de eodem cum motu ac quiete illud contemplentur.

FINIS.

Fagina. Linea.

